Кислотно основные свойства галогенов. Галогены - рождающие соли

от­но­сят фтор, хлор, бром, йод и астат. Они об­ра­зу­ют VIIА-груп­пу Пе­ри­о­ди­че­ской си­сте­мы хи­ми­че­ских эле­мен­тов.

Хи­ми­че­ские эле­мен­ты-га­ло­ге­ны и об­ра­зо­ван­ные ими про­стые

ве­ще­ства

На внеш­нем элек­трон­ном слое ато­мов га­ло­ге­нов на­хо­дят­ся 7 элек­тро­нов.

Наи­мень­ший ра­ди­ус атома среди всех га­ло­ге­нов имеет фтор, по­это­му у него самая вы­со­кая (даже среди всех хи­ми­че­ских эле­мен­тов) от­но­си­тель­ная элек­тро­от­ри­ца­тель­ность. По этой при­чине не су­ще­ству­ет ве­ществ, в ко­то­рых фтор имел бы по­ло­жи­тель­ную сте­пень окис­ле­ния, не го­во­ря о выс­шей сте­пе­ни окис­ле­ния, со­от­вет­ству­ю­щей но­ме­ру груп­пы (+7). Для фтора воз­мож­ны сте­пе­ни окис­ле­ния толь­ко –1 и 0. Осталь­ные га­ло­ге­ны в со­еди­не­нии с более элек­тро­от­ри­ца­тель­ным кис­ло­ро­дом могут об­ра­зо­вы­вать ве­ще­ства, в ко­то­рых сте­пень окис­ле­ния их ато­мов по­ло­жи­тель­на. Таким об­ра­зом, для Cl, Br, I ха­рак­тер­ны сте­пе­ни окис­ле­ния -1, 0, +1, +3, +5, +7.

Со­дер­жа­ние га­ло­ге­нов в зем­ной коре сни­жа­ет­ся от фтора к аста­ту. При­чем, если фтор, бром и йод можно от­не­сти к рас­про­стра­нен­ным хи­ми­че­ским эле­мен­там, то со­дер­жа­ние аста­та в зем­ной коре крайне мало. Га­ло­ге­ны вхо­дят в со­став мно­гих ми­не­ра­лов. Ис­клю­че­ние со­став­ля­ет астат. Астат об­на­ру­жен в про­дук­тах ра­дио­ак­тив­но­го рас­па­да урана.

Соли га­ло­ге­нов (га­ло­ге­ни­ды) вхо­дят в со­став мор­ской воды.

Галогены – элементы VII группы – фтор, хлор, бром, йод, астат (астат мало изучен в связи с его радиоактивностью). Галогены – ярко выраженные неметаллы. Лишь йод в редких случаях обнаруживает некоторые свойства, схожие с металлами.

В невозбужденном состоянии атомы галогенов имеют общие электронную конфигурацию: ns2np5. Это значит, что галогены имеют 7 валентных электронов, кроме фтора.

Физические свойства галогенов: F2 – бесцветный, трудно сжижающийся газ; Cl2 – желто-зеленый, легко сжижающийся газ с резким удушливым запахом; Br2 – жидкость красно-бурого цвета; I2 – кристаллическое вещество фиолетового цвета.

Водные растворы галогеноводородов образуют кислоты. НF – фтороводородная (плавиковая); НCl – хлороводородная (соляная); НBr – бромоводородная; НI – йодоводородная. Силы кислот сверху вниз снижаются. Плавиковая кислота является самой слабой в ряду галогеново-дородных кислот, а йодоводородная – самой сильной. Это объясняется тем, что энергия связи Нг сверху уменьшается. В том же направлении уменьшается и прочность молекулы Н Г, что связано с ростом межъядерного расстояния. Растворимость малорастворимых солей в воде тоже уменьшается:

Слева направо растворимость галогенидов уменьшается. АgF хорошо растворим в воде. Все галогены в свободном состоянии – окислители . Сила их как окислителей снижается от фтора к йоду. В кристаллическом, жидком и газообразном состоянии все галогены существуют в виде отдельных молекул. Атомные радиусы возрастают в том же направлении, что приводит к повышению температуры плавления и кипения. Фтор диссоциирует на атомы лучше йода. Электродные потенциалы при переходе вниз по подгруппе галогенов снижаются. У фтора самый высокий электродный потенциал. Фтор – самый сильный окислитель . Любой вышестоящий свободный галоген вытеснит нижестоящий, находящийся в состоянии отрицательного однозарядного иона в растворе.

Химические свойства галогенов

1. Взаимодействие с ксеноном. Наибольшей химической активностью обладает фтор, это сильнейший окислитель, который реагирует даже с инертными газами:

2F 2 + Xe = XeF 4 .

2. Взаимодействие с металлами. Все галогены взаимодействуют практически со всеми простыми веществами, наиболее энергично протекает реакция с металлами. Фтор при нагревании реагирует со всеми металлами, включая золото и платину, на холоде взаимодействует с щелочными металлами, свинцом и железом. Хлор, бром и йод при обычных условиях реагируют со щелочными металлами, а при нагревании – с медью, железом и оловом. В результате взаимодействия образуются галогениды, которые являются солями:

2М + nHal 2 = 2MHal n .

3. Взаимодействие с водородом. При обычных условиях фтор реагирует с водородом в темноте со взрывом, взаимодействие с хлором протекает на свету, бром и йод реагируют только при нагревании, причем реакция с йодом обратима.

Н 2 + Hal 2 = 2НHal.

Галогены в этой реакции проявляют окислительные свойства.

4. Взаимодействие с неметаллами. С кислородом и азотом галогены непосредственно не взаимодействуют, реагируют с серой, фосфором, кремнием, проявляя окислительные свойства, химическая активность у брома и йода выражена слабее, чем у фтора и хлора:

2P + 3Cl 2 = 2PCl 3 ;

Si + 2F 2 = SiF 4 .

5. Взаимодействие с водой. Галогены реагируют со многими сложными веществами. С водой фтор и остальные галогены реагируют по-разному:

F 2 + H 2 O = 2HF + O или

3F 2 + 3H 2 O = OF 2 + 4HF + H 2 O 2 ;

Hal + H 2 O = HHal + HHalO.

Эта реакции является реакцией диспропорционирования, где галоген одновременно является окислителем и восстановителем.

6. Взаимодействие со щелочами. Также галогены диспропорционируют в растворах щелочей:

Cl 2 + KOH = KClO + KCl (на холоде);

3Cl 2 + 6KOH = KClO 3 + 5KCl + 3Н 2 О (при нагревании).

Гипобромид-ион существует только при температуре ниже 0 °С, гипойодит-ион в растворах не существует.

7. Взаимодействие с сероводородом. Галогены способны отнимать водород от других веществ:

H 2 S + Br 2 = S + 2HBr.

8. Реакция замещения водорода в предельных углеводородах:

CH 4 + Cl 2 = CH 3 Cl + HCl.

9. Реакция присоединения к непредельным углеводородам:

C 2 H 4 + Cl 2 = C 2 H 4 Cl 2 .

10. Взаимное замещение галогенов. Реакционная способность галогенов снижается при переходе от фтора к йоду, поэтому предыдущий элемент вытесняет последующий из галогеноводородных кислот и их солей:

2KI + Br 2 = 2KBr+ I 2 ;

2HBr + Cl 2 = 2HCl + Br 2 .

ХЛОР

История открытия:

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O


Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства. Однако Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту, то есть оксид соляной кислоты.
Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор.
Название элемента происходит от греческогоclwroz - "зелёный".

Нахождение в природе, получение:

Природный хлор представляет собой смесь двух изотопов 35 Cl и 37 Cl. В земной коре хлор - самый распространённый галоген. Поскольку хлор очень активен, в природе он встречается только в виде соединений в составе минералов: галита NaCl, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 ·6H 2 O, карналлита KCl·MgCl 2 ·6Н 2 O, каинита KCl·MgSO 4 ·3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.
В промышленных масштабах хлор получают вместе с гидроксидом натрия и водородом при электролизе раствора поваренной соли:


2NaCl + 2H 2 О => H 2 + Cl 2 + 2NaOH


Для рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений используется процесс Дикона (каталитическое окисление хлороводорода кислородом воздуха):


4HCl + O 2 = 2H 2 O + 2Cl 2
В лабораториях обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):
2KMnO 4 + 16HCl = 5Cl 2 + 2MnCl 2 + 2KCl +8H 2 O
K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2CrCl 3 + 2KCl + 7H 2 O

Физические свойства:

При нормальных условиях хлор - жёлто-зелёный газ с удушающим запахом. Хлор заметно растворяется в воде ("хлорная вода"). При 20°C в одном объеме воды растворяется 2,3 объема хлора. Температура кипения = -34°C; температура плавления = -101°C, плотность (газ, н.у.) = 3,214 г/л.

Химические свойства

На внешнем электронном уровне атома хлора находятся 7 электронов (s 2 p 5), поэтому он легко присоединяет электрон, образуя анион Сl - . Благодаря наличию незаполненного d-уровня в атоме хлора могут появляться 1, 3, 5 и 7 неспаренных электронов, поэтому в кислородсодержащих соединениях он может иметь степень окисления +1, +3, +5 и +7.

В отсутствии влаги хлор довольно инертен, но в присутствии даже следов влаги активность его резко возрастает. Он хорошо взаимодействует с металлами:

2 Fе + 3 Сl 2 = 2 FеСl 3 (хлорид железа (III));

Cu + Сl 2 = СuСl 2 (хлорид меди (II))

и многими неметаллами:

Н 2 + Сl 2 = 2 НСl (хлороводород);

2 S + Сl 2 = S 2 Cl 2 (хлорид серы (1));

Si + 2 Сl 2 = SiСl 4 (хлорид кремния. (IV));

2 Р + 5 Сl 2 = 2 РСl 5 (хлорид фосфора (V)).

С кислородом, углеродом и азотом хлор в непосредственное взаимодействие не вступает.

При растворении хлора в воде образуется 2 кислоты: хлороводородная, или соляная, и хлорноватистая:

Сl 2 + Н 2 О = НСl + HClO.

При взаимодействии хлора с холодными растворами щелочей образуются соответствующие соли этих кислот:

Сl 2 + 2 NaOН = NaСl + NaClО + Н 2 О.

Полученные растворы называются жавелевой водой, которая, как и хлорная вода, обладает сильными окислительными свойствами благодаря наличию иона ClO - и применяется для отбеливания тканей и бумаги. С горячими растворами щелочей хлор образует соответствующие соли соляной и хлорноватой кислот:

3 Сl 2 + 6 NаОН = 5 NаСl + NаСlO 3 + 3 Н 2 О;

3 Сl 2 + 6 КОН = 5 КСl + КСlO 3 + 3 Н 2 О.

Образовавшийся хлорат калия называется бертолетовой солью.

При нагревании хлор легко взаимодействует со многими органическими веществами. В предельных и ароматических углеводородах он замещает водород, образуя хлорорганическое соединение и хлороводород, а к непредельным присоединяется по месту двойной или тройной связи.

При очень высокой температуре хлор полностью отбирает водород у углерода. При этом образуются хлороводород и сажа. Поэтому высокотемпературное хлорирование углеводородов всегда сопровождается сажеобразованием.

Хлор - сильный окислитель, поэтому легко взаимодействует со сложными веществами, в состав которых входят элементы, способные окисляться до более высокого валентного состояния:

2 FеСl 2 + Сl 2 = 2 FеСl 3 ;

Н 2 SO 3 + Сl 2 + Н 2 О = Н 2 SО 4 + 2 НСl.

Важнейшие соединения:

Хлороводород HCl - бесцветный газ, на воздухе дымит вследствие образования с парами воды капелек тумана. Обладает резким запахом, сильно раздражает дыхательные пути. Содержится в вулканических газах и водах, в желудочном соке. Химические свойства зависят от того, в каком состоянии он находится (может быть в газообразном, жидком состоянии или в растворе). Раствор HCl называетсясоляной (хлороводородной) кислотой . Это сильная кислота, вытесняет более слабые кислоты из их солей. Соли -хлориды - твёрдые кристаллические вещества с высокими температурами плавления.
Ковалентные хлориды - соединения хлора с неметаллами, газы, жидкости или легкоплавкие твёрдые вещества, имеющие характерные кислотные свойства, как правило легко гидролизующиеся водой с образованием соляной кислоты:


PCl 5 + 4H 2 O = H 3 PO 4 + 5HCl


Оксид хлора(I) Cl 2 O. , газ буровато-желтого цвета с резким запахом. Поражает дыхательные органы. Легко растворяется в воде, образуя хлорноватистую кислоту.
Хлорноватистая кислота HClO . Существует только в растворах. Это слабая и неустойчивая кислота. Легко разлагается на соляную кислоту и кислород. Сильный окислитель. Образуется при растворении хлора в воде. Соли -гипохлориты , малоустойчивы (NaClO*H 2 O при 70 °C разлагается со взрывом), сильные окислители. Широко используется для отбеливания и дезинфекциихлорная известь , смешанная соль Ca(Cl)OCl
Хлористая кислота HClO 2 , в свободном виде неустойчива, даже в разбавленном водном растворе она быстро разлагается. Кислота средней силы, соли -хлориты , как правило, бесцветны и хорошо растворимы в воде. В отличие от гипохлоритов, хлориты проявляют выраженные окислительные свойства только в кислой среде. Наибольшее применение (для отбелки тканей и бумажной массы) имеет хлорит натрия NaClO 2 .
Оксид хлора(IV) ClO 2 , - зеленовато-желтый газ с неприятным (резким) запахом, ...
Хлорноватая кислота , HClO 3 - в свободном виде нестабильна: диспропорционирует на ClO 2 и HClO 4 . Соли -хлораты ; из них наибольшее значение имеют хлораты натрия, калия, кальция и магния. Это сильные окислители, в смеси с восстановителями взрывоопасны. Хлорат калия (бертолетова соль ) - KClO 3 , использовалась для получения кислорода в лаборатории, но из-за высокой опасности её перестали применять. Растворы хлората калия применялись в качестве слабого антисептика, наружного лекарственного средства для полоскания горла.
Хлорная кислота HClO 4 , в водных растворах хлорная кислота - самая устойчивая из всех кислородсодержащих кислот хлора. Безводная хлорная кислота, которую получают при помощи концентрированной серной кислоты из 72%-ной HСlO 4 мало устойчива. Это самая сильная одноосновная кислота (в водном растворе). Соли -перхлораты , применяются как окислители (твердотопливные ракетные двигатели).

Применение:

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:
- В производстве поливинилхлорида, пластикатов, синтетического каучука;
- Для отбеливания ткани и бумаги;
- Производство хлорорганических инсектицидов - веществ, убивающих вредных для посевов насекомых, но безопасных для растений;
- Для обеззараживания воды - "хлорирования";
- В пищевой промышленности зарегистрирован в качестве пищевой добавки E925;
- В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений;
- В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.

Биологическая роль и токсичность:

Хлор относится к важнейшим биогенным элементам и входит в состав всех живых организмов. У животных и человека, ионы хлора участвуют в поддержании осмотического равновесия, хлорид-ион имеет оптимальный радиус для проникновения через мембрану клеток. Ионы хлора жизненно необходимы растениям, участвуя в энергетическом обмене у растений, активируя окислительное фосфорилирование.


Хлор в виде простого вещества ядовит, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую Мировую войну.

УПРАЖНЕНИЯ

1. В сосуде, имеется смесь водорода и хлора. Как изменится давление в сосуде при пропускании через смесь электрической искры?

Решение:

При пропускании искры газы реагируют по уравнению:

Н 2 + Сl 2 = 2НСl.

В результате этой реакции общее количество молекул в газовой фазе не изменяется, поэтому давление в сосуде также остается неизменным.

2. Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?

Решение:

При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 ,

который при нагревании восстанавливает оксид меди (II) до меди:

СuО + Н 2 = Си + Н 2 О.

Найдем количества веществ в первой реакции: m(р-ра НСl) = 18,7 . 1,07 = 20,0 г. m(НСl) = 20,0 . 0,146 = 2,92 г. v(НСl) = 2,92/36,5 = 0,08 моль. v(Zn) = 2,0/65 = 0,031 моль. Цинк находится в недостатке, поэтому количество выделившегося водорода равно:v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку v(СuО) = 4,0/80 = 0,05 моль. В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031 . 80 — 0,031 . 64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода со­ставит 4,0-0,5 = 3,5 г.

Ответ. 3,5 г.

__________________________________________________________________

3. Напишите уравнения реакций, которые могут про­исходить при действии концентрированной серной кислоты на все твердые галогениды калия. Возможны ли эти реакции в вод­ном растворе?

Решение:

При действии концентрированной серной кислоты на фторид и хлорид калия при нагревании выделяются, соответ­ственно,фтороводород и хлороводород:

КF + Н 2 SО 4(конц) = НF + КНSО 4 ,

КСl + Н 2 SО 4(конц) = НCl + КНSО 4 .

Бромоводород и иодоводород — сильные восстановители и легко окисляются серной кислотой до свободных галогенов, при этом НBrвосстанавливает серную кислоту до SО 2 , а НI (как бо­лее сильный восстановитель) — до Н 2 S:

2КВr + 2Н 2 SО 4(конц) = Вr 2 + SO 2 + К 2 SО 4 + 2Н 2 О,

8КI + 5Н 2 SО 4(конц) = 4I 2 + Н 2 S + 4К 2 SО 4 + 4Н 2 О.

В водном растворе серная кислота уже не является сильным окислителем. Кроме того, все галогеноводородные кислоты — сильные (за исключением плавиковой кислоты), и серная кислота не может вытеснять их из солей. В водном растворе возможна единственная обменная реакция:

2КF + Н 2 SО 4 = 2НF + К 2 SО 4 .

Признак реакции — образование малодиссоциирующего вещества (слабой плавиковой кислоты).

__________________________________________________________________

4. Составьте уравнения следующих реакций:

1) FеSО 4 + КClO 3 + Н 2 SО 4 → …

2) FеSО 4 + КClO 3 + КОН → …

3) I 2 + Ва(ОН) 2 → …

4) КВr + КВrО 3 + Н 2 SО 4 → …

Решение:

1) СlO 3 — — сильный окислитель, восстанавливается до Сl — ; Fе 2+ — восстановитель, окисляется до Fе 3+ (Fе 2 (SО 4) 3):

6FеSО 4 + КClO 3 + 3Н 2 SО 4 = 3Fе 2 (SО 4) 3 + КСl + 3Н 2 О.

2) СlO 3 — — окислитель, восстанавливается до Сl — , Fе 2+ — восстано­витель, окисляется в до Fе 3+ (Fе(ОН) 3):

6FеSО 4 + КClO 3 + 12КОН + 3Н 2 О = 6Fе(ОН) 3 ↓ + КСl + 6К 2 SO 4 .

3) Как и все галогены (кроме фтора), иод в щелочной среде диспропорционирует:

6I 2 + 6Ва(ОН) 2 = 5ВаI 2 + Ва(IO 3) 2 + 6Н 2 О.

4) Бромид-ион — сильный восстановитель и окисляется бромат-ионом в кислой среде до брома:

5КВr + КВrО 3 + 3Н 2 SО 4 = 3Вr 2 + 3К 2 SО 4 + 3Н 2 О.

Эта реакция обратна реакции диспропорционирования галогенов в щелочной среде.

__________________________________________________________________

5. После нагревания 22,12 г перманганата калия образовалось 21,16 г твердой смеси. Какой максимальный объем хлора (н.у.) можно получить при действии на образовавшуюся смесь 36,5%-ной соляной кислоты (плотность 1,18 г/мл). Какой объем кислоты при этом расходуется?

Решение:

При нагревании перманганат калия разлагается:

0,06

0,03

0,03

0,03

2KMnO 4

K 2 MnO 4

MnO 2

Масса смеси уменьшается за счет выделившегося кислорода: v(О 2) = m/ М = (22,12-21,16) / 32 = 0,03 моль. В результате реакции также образовались 0,03 моль К 2 МnО 4 , 0,03 моль МnО 2 и израсходовано 0,06 моль КМnО 4 . Перманганат калия разложился не весь. После реакции он остался в смеси в количестве v(КMnО 4) = 22,12/158 — 0,06 = 0,08 моль.

Все три вещества, находящиеся в конечной смеси (КМnО 4 , К 2 МnО 4 , МnО 2), — сильные окислители и при нагревании окисляют соляную кислоту до хлора:

0,08

0,64

2KMnO 4

16HCl

5Cl 2

2KCl

2MnCl 2

8H 2 O

0,03

0,24

0,06

K 2 MnO 4

8HCl

2Cl 2

2KCl

MnCl 2

4H 2 O

0,03

0,12

0,03

MnO 2

4HCl

Cl 2

MnCl 2

2H 2 O

Общее количество хлора, который выделился в этих трех реакциях, равно: v(Сl 2) = (0,08 . 5/2) + (0,03 . 2) + 0,03 = 0,29 моль, а объем составляет V(Сl 2) = 0,29 . 22,4 = 6,50 л.

Количество израсходованного хлороводорода равно: v(НСl) = (0,08 . 16/2) + (0,03 . 8) + (0,03 . 4) = 0,96 моль,

m(НСl) = v . M = 0,96 . 36,5 = 35,04 г,

m(р-ра НСl) = m(НСl)/ω(НСl) = 35,04/0,365 = 96,0 г,

V(р-ра НСl) = т/ρ= 96,0/1,18 = 81,4 мл.

Ответ. V(Сl 2) = 6,50 л, V(р-ра НСl) = 81,4 мл.

________________________________________________________________

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Какой из галогенов является самым активным и какой – наименее активным окислителем.

2. Напишите формулы известных оксидов хлора и назовите их.

3. Приведите примеры солей, образованных кислородсодержащими кислотами хлора. Назовите эти соли.

4. В виде каких соединений хлор встречается в природе.

5. Какая реакция является качественной реакцией на хлорид-ион.

6. Во сколько раз хлор тяжелее воздуха.

7. Закончите уравнения реакций:

.

8. Как осуществить следующие превращения:

9. Смешали 1л хлора и 2 л водорода (н.у.). Сколько граммов хлороводорода можно получить из такой смеси. Чему будет равен объем смеси после реакции.

10. Какой объем хлора может быть получен при взаимодействии 2 моль хлороводорода и 3 моль оксида марганца (IV ).

ВИДЕО ОПЫТ


1. Укажите символ иона с наиболее выраженными восстановительными свойствами:

а) Br -

б) Cl -

в) I -

г) F -

2. В каком ряду вещества перечислены в порядке последовательного возрастания температуры плавления:

а) бром, хлор, йод

б) йод, бром, хлор

в) хлор, йод, бром

г) хлор, бром, йод

3. Какова максимальная валентность хлора в соединениях:

а) I

б) V

в) VII

Фтор может быть только окислителем, что легко объяснить его положением в периодической системе химических элементов Д. И. Менделеева. Это сильнейший окислитель, окисляющий даже некоторые благородные газы:

2F 2 +Хе=XeF 4

Высокую химическую активность фтора следует объяснить

о на разрушение молекулы фтора требуется намного меньше энергии, чем ее выделяется при образовании новых связей.

Так, вследствие малого радиуса атома фтора неподеленные электронные пары в молекуле фтора взаимно сталкиваются и ослабевает

Галогены взаимодействуют почти со всеми простыми веществами.

1. Наиболее энергично протекает реакция с металлами. При нагревании фтор взаимодействует со всеми металлами (в том числе с золотом и платиной); на холоду реагирует с щелочными металлами, свинцом, железом. С медью, никелем реакция на холоду не протекает, поскольку на поверхности металла образуется защитный слой фторида, предохраняющий металл от дальнейшего окисления.

Хлор энергично реагирует с щелочными металлами, а с медью, железом и оловом реакция протекает при нагревании. Аналогично ведут себя бром и иод.

Взаимодействие галогенов с металлами является экзотерми­ческим процессом и может быть выражена уравнением:

2М+nHaI 2 =2МНаI DH<0

Галогениды металлов являются типичными солями.

Галогены в этой реакции проявляют сильные окислительные свойства. При этом атомы металла отдают электроны, а атомы галогена принимают, например:

2. При обычных условиях фтор реагирует с водородом в тем­ноте со взрывом. Взаимодействие хлора с водородом протекает на ярком солнечном свету.

Бром и водород взаимодействуют только при нагревании, а иод с водородом реагирует при сильном нагревании (до 350°С), но этот процесс обратимый.

Н 2 +Сl 2 =2НСl Н 2 +Br 2 =2НBr

Н 2 +I 2 « 350° 2HI

Галоген в данной реакции является окислителем.

Как показали исследования, реакция взаимодействия водо­рода с хлором на свету имеет следующий механизм.

Молекула Сl 2 поглощает квант света hv и распадается на неор­ганические радикалы Сl . . Это служит началом реакции (первона­чальное возбуждение реакции). Затем она продолжается сама со­бой. Радикал хлора Сl . реагирует с молекулой водорода. При этом образуется радикал водорода Н. и НСl. В свою очередь радикал водорода Н. реагирует с молекулой Сl 2 , образуя НСl и Сl . и т.д.

Сl 2 +hv=Сl . +Сl .

Сl . +Н 2 =НСl+Н.

Н. +Сl 2 =НСl+С1 .

Первоначальное возбуждение вызвало цепь последователь­ных реакций. Такие реакции называются цепными. В итоге полу­чается хлороводород.

3. Галогены с кислородом и азотом непосредственно не взаи­модействуют.

4. Хорошо реагируют галогены с другими неметаллами, на­пример:

2Р+3Сl 2 =2РСl 3 2Р+5Сl 2 =2РСl 5 Si+2F 2 =SiF 4

Галогены (кроме фтора) не реагируют с инертными газами. Химическая активность брома и иода по отношению к неме­таллам выражена слабее, чем у фтора и хлора.

Во всех приведенных реакциях галогены проявляют окисли­тельные свойства.

Взаимодействие галогенов со сложными веществами. 5. С водой.

Фтор реагирует с водой со взрывом с образованием атомарного кислорода:

H 2 O+F 2 =2HF+O

Остальные галогены реагируют с водой по следующей схеме:

Гал 0 2 +Н 2 О«НГал -1 +НГал +1 О

Эта реакция является реакцией диспропорционирования, когда галоген является одновременно и восстановителем, и окис­лителем, например:

Сl 2 +Н 2 O«НСl+НСlO

Cl 2 +H 2 O«H + +Cl - +HClO

Сl°+1e - ®Сl - Cl°-1e - ®Сl +

где НСl - сильная соляная кислоты; НСlO - слабая хлорноватис­тая кислота

6. Галогены способны отнимать водород от других веществ, скипидар+С1 2 = НС1+углерод

Хлор замещает водород в предельных углеводородах: СН 4 +Сl 2 =СН 3 Сl+НСl

и присоединяется к непредельным соединениям:

С 2 Н 4 +Сl 2 =С 2 Н 4 Сl 2

7. Реакционная способность галогенов снижается в ряду F-Сl - Br - I. Поэтому предыдущий элемент вытесняет последую­щий из кислот типа НГ (Г - галоген) и их солей. В этом случае активность убывает: F 2 >Сl 2 >Br 2 >I 2

Применение

Хлор применяют для обеззараживания питьевой воды, отбел­ки тканей и бумажной массы. Большие количества его расходу­ются для получения соляной кислоты, хлорной извести и др. Фтор нашел широкое применение в синтезе полимерных материалов - фторопластов, обладающих высокой химической стойкостью, а также в качестве окислителя ракетного топлива. Некоторые со­единения фтора используют в медицине. Бром и иод - сильные окислители, используются при различных синтезах и анализах веществ.

Большие количества брома и иода расходуются на изготовле­ние лекарств.

Галогеноводороды

Соединения галогенов с водородом НХ, где X - любой га­логен, называются галогеноводородами. Вследствие высокой электроотрицательности галогенов связующая электронная пара смещена в их сторону, поэтому молекулы этих соединений полярны.

Галогеноводороды - бесцветные газы, с резким запахом, легко растворимы в воде. При 0°С в 1 объеме воды растворяете 500 объемов НС1, 600 объемов HBr и 450 объемов HI. Фтороводород смешивается с водой в любых соотношениях. Высокая раство­римость этих соединений в воде позволяет получать концентриро-

Таблица 16. Степени диссоциации галогеноводородных кислот

ванные растворы. При растворении в воде галогеноводороды диссоциируют по типу кислот. HF относится к слабо диссоциированным соединениям, что объясняется особой прочностью связи в куле. Остальные же растворы галогеноводородов относятся к числу сильных кислот.

HF - фтороводородная (плавиковая) кислота НС1 - хлороводородная (соляная) кислота HBr - бромоводородная кислота HI - иодоводородная кислота

Сила кислот в ряду HF - НСl - HBr - HI возрастает, что объясняется уменьшением в том же направлении энергии связи и увеличением межъядерного расстояния. HI - самая сильная кислота из ряда галогеноводородных кислот (см. табл. 16).

Поляризуемость растет вследствие того, что вода поляризует

больше ту связь, чья длина больше. I Соли галогеноводородных кислот носят соответственно следующие названия: фториды, хлориды, бромиды, иодиды.

Химические свойства галогеноводородных кислот

В сухом виде галогеноводороды не действуют на большинство металлов.

1. Водные растворы галогеноводородов обладают свойствами бескислородных кислот. Энергично взаимодействуют со многими металлами, их оксидами и гидроксидами; на металлы, стоящие в электрохимическом ряду напряжений металлов после водорода, не действуют. Взаимодействуют с некоторыми солями и газами.

Фтороводородная кислота разрушает стекло и силикаты:

SiO 2 +4HF=SiF 4 +2Н 2 O

Поэтому она не может храниться в стеклянной посуде.

2. В окислительно-восстановительных реакциях галогеноводородные кислоты ведут себя как восстановители, причем восста­новительная активность в ряду Сl - , Br - , I - повышается.

Получение

Фтороводород получают действием концентрированной серной кислоты на плавиковый шпат:

CaF 2 +H 2 SO 4 =CaSO 4 +2HF­

Хлороводород получают непосредственным взаимодействием водорода с хлором:

Н 2 +Сl 2 =2НСl

Это синтетический способ получения.

Сульфатный способ основан на реакции концентрированной

серной кислоты с NaCl.

При небольшом нагревании реакция протекает с образовани­ем НСl и NaHSO 4 .

NaCl+H 2 SO 4 =NaHSO 4 +HCl­

При более высокой температуре протекает вторая стадия ре­акции:

NaCl+NaHSO 4 =Na 2 SO 4 +HCl­

Но аналогичным способом нельзя получить HBr и HI, т.к. их соединения с металлами при взаимодействии с концентрировав-

ной серной кислотой окисляются, т.к. I - и Br - являются сильны­ми восстановителями.

2NaBr -1 +2H 2 S +6 O 4(к) =Br 0 2 +S +4 O 2 ­+Na 2 SO 4 +2Н 2 O

Бромоводород и иодоводород получают гидролизом PBr 3 и PI 3: PBr 3 +3Н 2 O=3HBr+Н 3 PO 3 PI 3 +3Н 2 О=3HI+Н 3 РO 3

Галогениды

Галогениды металлов являются типичными солями. Харак­теризуются ионным типом связи, где ионы металла имеют поло­жительный заряд, а ионы галогена отрицательный. Имеют крис­таллическую решетку.

Восстановительная способность галогенидов повышается в ряду Сl - , Br - , I - (см. §2.2).

Растворимость малорастворимых солей уменьшается в ряду AgCl - AgBr - AgI; в отличие от них, соль AgF хорошо раство­рима в воде. Большинство же солей галогеноводородных кислот хорошо растворимы в воде.

Галогены – так обозначаются элементы химической таблицы Менделеева, расположенные в семнадцатой группе. Особенность в том, что они вступают в реакцию почти что со всеми веществами простого типа, исключая лишь определенные неметаллы. Так как они выступают в роли энергетических окислителей, в природе они смешиваются с другими веществами. Химическая активность галогенов напрямую зависит от порядкового номера.

Общие сведения о галогенах

Галогенами называют данные элементы: фтор, хлор, бром, йод и астат. Все они относятся к ярко выраженным неметаллам. Только лишь в йоде можно при определенных обстоятельствах обнаружить свойства, приписываемые металлам.

Изначально был использован термин «галоген» в 1811 году немецким ученым И. Швейггером, который дословно с греческого переводится как «солерод».

Будучи в основном состоянии электронная конфигурация атомов галогенов следующая – ns 2 np 5, где буквой n отмечается главное квантовое число или период. Если сравнить атом хлора с остальными галогенами, будет заметно, что его электроны слабо экранированы от ядра, из-за чего тот характеризуется высокой удельной электронной плотностью и меньшим радиусом, а также имеет большие значения энергии ионизации и электроотрицательности.

Фтор (F) – элемент, доступный в виде солей, которые рассеяны по разным горным породам. Наиболее важное соединение – минерал флюорит и плавиковый шпат. Также небезызвестен минерал криолит.

Хлор (Cl) – является наиболее распространенным галогеном. Его важнейшим природным соединением считается хлорид натрия, который применяется в качестве основного сырья, если нужно получить другие хлористые соединения. Хлорид натрия в большей массе распространен в водах морей и океанов, но встретить его можно и в некоторых озерах. Отыскать данный галоген можно и в твердом виде, так называемой каменной соли.

Бром (Br) – в условиях природы имеет вид солей натрия и калия в паре с хлористыми солями. Как правило, встречается в соленых озерах и морях.

Йод (J) – химический элемент, который также нередко встречается в морской воде, но в очень малых количествах, поэтому выделение его из влаги – процедура достаточно затруднительная. Заметим, что существует определенный вид морских водорослей – ламинарии, в их тканях происходит накопление йода. Из золы этих водорослей и добывается йод. Встретить йод можно и в буровых водах, пролегающих под землей.

Астат (At) – практически не встречаемый в условиях природы химический элемент. Чтобы его добыть, искусственно осуществляются ядерные реакции. У астата имеется самый долгоживущий изотоп, период полураспада которого составляет 8.3 часа.

Химические особенности галогенов

Задавая вопрос, галогены – что это такое, следует ответить, что это все элементы Менделеевской таблицы, где у каждого есть свой собственный показатель химической активности. При рассмотрении последней у фтора следует отметить, что она максимально высокая. Академик А.Е. Ферсман называет фтор всесъедающим. Так, если взять комнатную температуру, то в атмосфере фтора будут сгорать железо, свинец и щелочные металлы.

Важно! Фтор не оказывает никакого воздействия на определенные металлы (медь, никель), на поверхности которых образуется защитный слой в виде фторида. Но если нагреть фтор, реакция начнет появляться.

Отметим реакцию фтора на многие неметаллы, среди которых водород, йод, углерод, бор и другие. В условиях холода образуются соответствующие соединения, которые способны привести к взрыву или образованию пламени. Фтор не способен реагировать лишь на кислород, азот и углерод (последний должен быть в виде алмаза).

Очень энергичная реакция замечена на сложные вещества. В атмосфере фтора сгорают даже довольно стойкие вещества в виде стекла (вата) и водяного пара. Следует заметить, что фтор нельзя растворить в воде, так как он способен ее энергично растворять.

Обратите внимание! Фтор является самым сильным окислителем.

Каждые галогенные соединения имеют свои особенности, так, у хлора также заметна высокая химическая активность, хоть и уступающая фтору. Данный элемент способен оказывать действие на все простые вещества, исключая лишь кислород, азот и благородные газы. В условиях высокой температуры следующие неметаллы: фосфор, мышьяк, кремний и сурьма, вступая в реакцию с хлором, выделяют большое количество тепла. В условиях комнатной температуры и без света хлор почти что не оказывает воздействия на водород, но если его нагреть или добавить яркий солнечный свет, реакция способна привести к взрыву.

Реакция хлора на воду следующая: образуется соляная и хлорноватистая кислота. Если в хлор внести фосфор, то последний загорится, в результате чего образуется трех,- и пятихлористый фосфор.

Чтобы получить хлор, необходимо осуществить электролиз концентрированных водных растворов NaCl. Со стороны угольного анода начнет выделяться хлор, а на катоде – водород. Используя хлор, получают хлористый водород и соляную кислоту, которая применяется с целью отбеливания бумаги и тканей и, если требуется обеззаразить питьевую воду.

Галогенные соединения с бромом имеют более низкую химическую активность, нежели с хлором. Бром с водородом соединяются лишь в условиях нагревания. Для получения брома необходимо окислить HBr. В промышленных условиях используются бромиды и хлористый раствор. На территории России основной источник брома – подземные буровые воды и насыщенные растворы определенных соляных озер.

У йода еще меньший показатель химической активности, которую имеют другие галогенные соединения. Несмотря на меньшую активность, данный элемент также способен вступать в реакцию со многими неметаллами в обычных условиях, в результате чего образуются соли (если обратить внимание, то слово «галоген» исходит от слов «рождение соли»).

Для реакции йода с водородом требуется довольно сильное нагревание. Сама реакция неполная, так как жидкий водород начинает разлагаться.

Сравнивая галогенные соединения, отмечается, что их активность становится меньше от фтора к астату. Особенность галогенов в том, что они вступают в реакцию со многими простыми веществами. В случае с металлами наблюдается быстрая реакция, при которой выделяется большое количество тепла.

Особенности добычи и использования галогенов

В естественных условиях галогены – анионы, поэтому для получения свободных галогенов применяется метод окисления электролизом или с использованием окислителей. К примеру, чтобы получить хлор, необходимо сделать гидролиз раствора поваренной соли. Галогенные соединения используются во многих отраслях:

  • Фтор. Несмотря на большую реактивность, данный химический элемент находит частое применение в промышленности. К примеру, фтор – ключевой элемент тефлона и прочих фторполимеров. Также в виде органических химических веществ представим хлорфторуглероды, ранее используемые как хладагенты и пропелленты в аэрозолях. Впоследствии их прекратили применять, так как была вероятность, что они воздействуют на окружающую среду. Фтор часто встречается в составе зубной пасты, направленный на сохранение целостности зубов. Также данный галоген можно застать в глине, где он актуален для производства керамики;
  • Хлор. Наиболее частое использование хлора – дезинфекция питьевой воды и бассейнов. А такое соединение, как гипохлорит натрия, – основной компонент отбеливателя. Промышленные структуры и лаборатории не обходятся без применения соляной кислоты. В состав поливинилхлорида также входит фтор, как и в другие полимеры, при помощи которых осуществляется изоляция труб, проводки и прочих коммуникаций. Нашлось хлору применение и в фармацевтике, где на его основе производятся лекарства, при помощи которых лечатся инфекции, аллергии и диабет. Как было отмечено выше, хлор хорошо дезинфицирует, поэтому с его помощью стерилизуется больничное оборудование;
  • Бром. Главная особенность данного химического элемента в том, что он негорюч. По этой причине он успешно используется для подавления горения. Бром в составе с другими элементами в одно время шел для производства специальных средств для огорода, благодаря которым гибли все бактерии. Но со временем средство запретили с предлогом, что последнее оказывает негативное воздействие на озоновый слой планеты. Также бром актуален в таких сферах: производство бензина, изготовление фотопленки, огнетушителей и некоторых лекарств;
  • Йод. Важный химический элемент, от которого зависит правильное функционирование щитовидной железы. Из-за нехватки йода в организме последняя может даже начать увеличиваться в размерах. Йод себя отлично зарекомендовал как антисептическое средство. Йод встречается в растворах, при помощи которых очищают раны;
  • Астат. Данный галоген является не только редкоземельным, но и радиоактивным, по этой причине не находит особенного применения.

Галогены и их физические свойства

Наличие тех или иных химических и физических свойств напрямую зависит от строения атома элемента. По большей части, у всех галогенов схожие свойства, но все же имеются определенные особенности:

  • Фтор. Элемент в виде светло-зеленого газа с ядовитыми свойствами;
  • Хлор. Желто-зеленый газ, также ядовитый, с резким, удушливым и неприятным запахом. Элемент способен легко растворяться в воде, из-за чего образуется хлорная вода;
  • Бром. Выступает в качестве единственного жидкого неметалла. Это тяжелый элемент, выполненный в красно-буром цвете. Если поместить бром в какой-либо сосуд, стенки последнего окрасятся в красно-бурый цвет, выделяемый с парами галогена. Запах брома тяжелый и неприятный. Для хранения брома используются специальные склянки, имеющие притертые пробки и колпаки. Важно заметить, что последние не должны быть сделаны из резины, так как элемент способен легко разъесть этот материал;
  • Йод. Темно-серое кристаллическое вещество, в парах имеющее фиолетовый цвет. Обычные условия не дают возможность привести йод в состояние плавления, а тем более кипения, так как даже слабое нагревание элемента приводит к его возгонке: когда он из твердого переходит в газообразное состояние. Этим свойством обладает не только йод, но и некоторые другие вещества. Это свойство пригодилось при очистке веществ от примесей. Йод – один из тех элементов, которые плохо растворяются в воде. Последняя получает светло-желтый цвет. Особенно хорошо йод способен растворяться в спирте, в результате чего начали делать 5-10% йодный раствор, называемый йодной настойкой.

Галогенные соединения и их роль в организме человека

При выборе зубной пасты многие обращают внимание на состав: есть ли в нем фтор. Данный компонент добавляется не просто так, ведь именно он способствует построению зубной эмали и костей, а также способен сделать зубы более стойкими к кариесу. Процессы обмена веществ также не обходятся без помощи фтора.

В организме человека немаловажное значение играет также хлор, активно участвующий в сохранении водно-солевого баланса, а также поддерживающий осмотическое давление. Благодаря хлору, эффективнее функционирует обмен веществ, построение тканей. Лучшему пищеварению способствует именно соляная кислота, без которой невозможно было бы переваривать пищу.

Хлор обязателен для человеческого организма и должен поступать в него в определенных количествах. Если пренебрегать нормой поступления элемента в организм, можно столкнуться с отеками, головными болями и прочими неприятными ощущениями.

Бром в небольших количествах находится в мозге, почках, крови и печени. В медицине бром – отличное средство успокоительного типа. Однако его необходимо давать в строгих пропорциях, так как последствия у передозировки не лучшие: угнетенное состояние нервной системы.

Йод строго необходим щитовидной железе, помогая последней активно бороться с поступающими в организм бактериями. Если в организме человека недостаточно йода, может начаться заболевание щитовидной железы.

В качестве вывода отметим, что галогены необходимы не только для реализации многих повседневных вещей, но и для эффективного функционирования нашего организма. Данные химические элементы имеют определенные особенности, которые находят свое применение в различных отраслях человеческой жизнедеятельности.

Видео

ОПРЕДЕЛЕНИЕ

Галогены – элементы VII А группы – фтор (F), хлор (Cl), бром (Br) и йод (I).

Электронная конфигурация внешнего энергетического уровня галогенов ns 2 np 5 . Поскольку, до завершения энергетического уровня галогенам не хватает всего 1-го электрона, в ОВР они чаще всего проявляют свойства окислителей. Степени окисления галогенов: от «-1» до «+7». Единственный элемент группы галогенов – фтор – проявляет только одну степень окисления «-1» и является самым электроотрицательным элементом. Молекулы галогенов двухатомны: F 2 , Cl 2 , Br 2 , I 2 .

Химические свойства галогенов

С ростом заряда ядра атома химического элемента, т.е. при переходе от фтора к йоду окислительная способность галогенов снижается, что подтверждается способностью вытеснения нижестоящих галогенов вышестоящими из галогеноводородных кислот и их солей:

Br 2 + 2HI = I 2 + 2HBr;

Cl 2 + 2KBr = Br 2 + 2KCl.

Наибольшей химической активностью обладает фтор. Большинство химических элементов даже при комнатной температуре взаимодействует с фтором, выделяя большое количество теплоты. Во фторе горит даже вода:

2H 2 O + 2F 2 = 4HF + O 2 .

Свободный хлор менее реакционноспособен, чем фтор. Он непосредственно не реагирует с кислородом, азотом и благородными газами. Со всеми остальными веществами он взаимодействует подобно фтору:

2Fe + Cl 2 = 2FeCl 3 ;

2P + 5Cl 2 = 2PCl 5 .

При взаимодействии хлора с водой на холоде происходит обратимая реакция:

Cl 2 + H 2 O↔HCl +HClO.

Смесь, представляющую собой продукты реакции, называют хлорной водой.

При взаимодействии хлора с щелочами на холоде образуются смеси хлоридов и гипохлоритов:

Cl 2 + Ca(OH) 2 = Ca(Cl)OCl + H 2 O.

При растворении хлора в горячем растворе щелочи происходит реакция:

3Cl 2 + 6KOH = 5KCl +KClO 3 +3H 2 O.

Бром, как и хлор растворяется в воде и, частично реагируя с ней, образует так называемую «бромную воду», тогда как йод в воде практически нерастворим.

Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие йода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н 2 + I 2 = 2HI - 53 кДж.

Физические свойства галогенов

При н.у. фтор – газ светло-желтого цвета, обладающий резким запахом. Ядовит. Хлор – газ светло-зеленого цвета, также как и фтор имеет резкий запах. Сильно ядовит. При повышенном давлении и комнатной температуре легко переходит в жидкое состояние. Бром – тяжелая жидкость красно-бурого цвета с характерным неприятным резким запахом. Жидкий бром, а также его пары сильно ядовиты. Бром плохо растворяется в воде и хорошо в неполярных растворителях. Йод – твердое вещество темно-серого цвета с металлическим блеском. Пары йода имеют фиолетовый цвет. Йод легко возгоняется, т.е. переходит в газообразное состояние из твердого, при этом минуя жидкое состояние.

Получение галогенов

Галогены можно получить при электролизе растворов или расплавов галогенидов:

MgCl 2 = Mg + Cl 2 (расплав).

Наиболее часто галогены получают по реакции окисления галогенводородных кислот:

MnO 2 + 4HCl = MnCl 2 + Cl 2 +2H 2 O;

K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2KCl +2CrCl 3 +7H 2 O;

2KMnO 4 +16HCl = 2MnCl 2 +5Cl 2 +8H 2 O +2KCl.

Применение галогенов

Галогены используют в качестве сырья для получения различных продуктов. Так, фтор и хлор используют для синтеза различных полимерных материалов, хлор также является сырьем при производстве соляной кислоты. Бром и йод нашли широкое применение в медицине, бром также используется лакокрасочной промышленности.

Примеры решения задач

ПРИМЕР 1

Задание Рассчитайте объем хлора (н. у.), который прореагировал с иодидом калия, если при этом образовался йод массой 508 г
Решение Запишем уравнение реакции взаимодействия хлора с йодидом калия:

Cl 2 + 2KI = I 2 + 2KCl

Молярная масса йода, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева, равна – 254 г/моль. Найдем количество вещества образовавшегося йода:

v(I 2) = m(I 2)/M(I 2)

Читайте также: